О построении псевдоримановых пространств с f-структурой, находящихся в каноническом 2F-планарном отображении Π типа

Сикаченко И.

(ОНУ, Одесса, Украина) E-mail: inna.sikachenko@gmail.com

Курбатова И.Н.

(ОНУ, Одесса, Украина)

E-mail: irina.kurbatova27@gmail.com

Рассмотрим римановы пространства (V_n, g_{ij}, F_i^h) и $(\overline{V}_n, \overline{g}_{ij}, \overline{F}_i^h)$, на которых определены аффинорные структуры. В [1] показано, что 2F-планарное отображение $(2F\Pi O)$ (V_n, g_{ij}, F_i^h) на $(\overline{V}_n, \overline{g}_{ij}, \overline{F}_i^h)$ по необходимости сохраняет структуру, то есть в общей по отображению системе координат (x^i)

$$F_i^h(x) = \overline{F}_i^h(x),$$

и основные уравнения $2F\Pi O$ имеют вид

$$\overline{\Gamma}_{ij}^h(x) = \Gamma_{ij}^h(x) + \psi_{(i}\delta_{j)}^h + \phi_{(i}F_{j)}^h + \sigma_{(i}F_{j)}^h,$$

где $\Gamma^h_{ij}, \overline{\Gamma}^h_{ij}$ - компоненты объектов связности V_n, \overline{V}_n ; $\psi_i(x), \phi_i(x), \sigma_i(x)$ - некоторые ковекторы, а круглыми скобками обозначена операция симметрирования. $2F\Pi O$ считается тривиальным при $\psi_i = \phi_i = \sigma_i = 0$.

Здесь обозначено

$$F_i^h = F_i^h, \quad F_i^h = F_\alpha^h F_i^\alpha.$$

Мы показали, что нетривиальные $2F\Pi O$ могут быть лишь одного из трех типов:

$$I \quad \psi_i = 0, \quad \phi_i \neq 0, \quad \sigma_i \neq 0;$$

$$II \quad \psi_i \neq 0, \quad \phi_i = 0, \quad \sigma_i \neq 0;$$

$$III \quad \psi_i \neq 0, \quad \phi_i \neq 0, \quad \sigma_i \neq 0.$$

При этом 2F-планарное отображение названо *каноническим I(II) muna* (обозначается $2F\Pi O(I)(2F\Pi O(II))$ в случае I(II)) и просто $2F\Pi O$ в случае III.

Говорят, что F_i^h определяет f-структуру [2] на псевдоримановом пространстве (V_n, g_{ij}) , если имеют место условия

$$F_{\alpha}^{h} F_{\beta}^{\alpha} F_{i}^{\beta} + F_{i}^{h} = 0, \quad i, h, \alpha, \beta, \dots = 1, 2, \dots, n,$$

 $Rg \|F_{i}^{h}\| = 2k \quad (2k < n).$

Полагаем f-структуру согласованной с метрикой в виде

$$F_{ij} + F_{ji} = 0, \quad F_{ij} = g_{i\alpha} F_j^{\alpha}$$

В дальнейшем полагаем аффинор ковариантно постоянным:

$$F_{i,j}^h = 0,$$

где « ,» - знак ковариантной производной в V_n .

Мы рассмотрели $2F\Pi O(II)$ псевдоримановых пространств с абсолютно параллельной f-структурой и построили преобразование, которое дает возможность из одной пары таких пространств, находящихся в $2F\Pi O(II)$, получить новую пару псевдоримановых пространств с абсолютно параллельной f-структурой, принципиально отличающихся от исходной пары и при этом также находящихся в $2F\Pi O(II)$.

Литература

- [1] Raad Kadem. О 2*F*-планарных отображениях пространств аффинной связности. Abstracts of the Colloquium on Differential Geometry, Eger, Hungary : 20–25, 1989.
- [2] А.П.Широков. Структуры на дифференцируемых многообразиях. *Итоги науки. Сер.Мат. Алгебра. Топол. Геом. 1967*: 127–188, 1969.
- [3] Н. С. Синюков. Геодезические отображениях римановых пространств . Москва : Наука, 1979.